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ABSTRACT

The Bayesian Processor of Forecast (BPF) is developed for a continuous predictand. Its pur-

pose is to process a deterministic forecast (a point estimate of the predictand) into a probabilistic

forecast (a distribution function, a density function, and a quantile function). The quantification of

uncertainty is accomplished by extracting and fusing two kinds of information from two different

sources: (i) a long sample of the predictand from the National Climatic Data Center, and (ii) a short

sample of the official National Weather Service forecast from the National Digital Forecast Data-

base. The official forecast is deterministic and hence deficient: it contains no information about

uncertainty. The BPF remedies this deficiency by outputting the complete and well-calibrated

characterization of uncertainty needed by decision makers and information providers. The BPF

comes furnished with (i) the meta-Gaussian model, which fits well meteorological data as it allows

all forms of marginal distribution functions, and non-linear and heteroscedastic dependence struc-

tures, and (ii) the statistical procedures for estimation of parameters from asymmetric samples and

for coping with nonstationarities in the predictand and the forecast due to the annual cycle and the

lead time. A comprehensive illustration of the BPF is reported for forecasts of the daily maximum

temperature issued with lead times of 1, 4, and 7 days for three stations in two seasons (cool and

warm).
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1. INTRODUCTION

1.1 The Uncertainty Quantification Problem

The National Digital Forecast Database (NDFD) was designed by the National Weather Ser-

vice (NWS) to store the official forecasts of the sensible weather elements produced by the NWS

field offices throughout the United States (Glahn and Ruth, 2003). The official forecasts are

subjective in that they are made judgmentally by human forecasters with the support of software

systems and based on information from multiple sources, including output from numerical weather

prediction models and guidance from the national centers. With the exception of the occurrence of

precipitation, which is forecasted in terms of probability, all other weather elements are forecasted

deterministically. Hence the deficiency of the NDFD: it contains no information about forecast

uncertainty (Ryan, 2003).

To remedy this deficiency, the Meteorological Development Laboratory of the NWS began

developing statistical techniques for assessing the uncertainty in forecasts disseminated through

the NDFD (Peroutka et al., 2005). This article presents a solution to the same problem, but via a

different technique and in a different format.

1.2 Bayesian Processor of Forecast

The Bayesian Processor of Forecast (BPF) for the NDFD is a specialized application of the

Bayesian theory of probabilistic forecasting formulated and tested in various settings over the past

two decades (e.g., Krzysztofowicz, 1983; Alexandridis and Krzysztofowicz, 1985; Krzysztofowicz

and Watada, 1986; Krzysztofowicz and Reese, 1991; Krzysztofowicz, 1999; Krzysztofowicz and

Kelly, 2000a).

The BPF developed and illustrated herein quantifies the uncertainty in a deterministic forecast

of the daily maximum temperature — one of the predictands selected by the NWS for development
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and testing of their technique (Peroutka et al., 2005). In general, this BPF is applicable to any

continuous predictand. The inputs to and the outputs from the BPF are as follows (Fig. 1). In

the estimation phase, the inputs are a climatic sample of the predictand, and a joint sample of the

forecast and the predictand for a given forecast point (a grid point or a station) and a specified

lead time; the outputs are the values of parameters (as the BPF is entirely parametric). In the

forecasting phase, the input is a deterministic forecast (a point estimate of the predictand) and

the output is a probabilistic forecast (a distribution function, a density function, and a quantile

function). Thus, the BPF outputs the complete and well-calibrated characterization of uncertainty

needed by rational decision makers who use formal decision models and by information providers

who want to extract various forecast products for their customers (e.g., quantiles with specified

exceedance probabilities, credible intervals with specified inclusion probabilities, probabilities of

exceedance for specified thresholds).

1.3 Information Fusion

In concept, the BPF quantifies the total uncertainty about a predictand, given a deterministic

forecast. The quantification of uncertainty is accomplished via Bayes theorem, which extracts and

fuses two kinds of information from two different sources (Fig. 1): (i) Information about the nat-

ural variability of the predictand is extracted from a climatic sample, which may be retrieved from

the National Climatic Data Center (NCDC). (ii) Information about the predictive performance of

the deterministic forecast is extracted from a joint sample, which may be retrieved from the NDFD.

The size of each sample may be limited, not only by the length of the record, but also by the

requirement of statistical homogeneity. For instance, the nonstationarity of climate may necessi-

tate a truncation of the available climatic sample; and a significant modification in the forecasting

system (e.g., hiring of an experienced or a novice forecaster by a field office; an improvement of
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a numerical weather prediction model by a national center) may necessitate a truncation of the

available joint sample. However, the most important fact here is that the joint sample is typically

much shorter than the climatic sample. This gives rise to the statistical problem of information

fusion, which can be solved correctly only by a proper application of Bayes theorem.

1.4 Modeling Approach

The key challenges that must be overcome during the development of a proper technique for

quantifying uncertainty include the non-stationary behavior of the meteorological time series due to

seasonality, the non-Gaussian form of the probability distributions of meteorological variates, and

the non-linear and heteroscedastic dependence structure between the forecast and the predictand.

These features of meteorological data, and the ways the BPF handles them, are explained and

illustrated throughout the article.

The article is organized as follows. Section 2 outlines the theoretic foundation of the BPF,

and defines its major components. Section 3 details the modeling and estimation of the first

component: the prior (climatic) distribution function. Section 4 does the same for the second

component: the family of the likelihood functions. Section 5 presents examples of probabilistic

forecasts. Section 6 discusses several attributes of the BPF and the empirical results obtained for

three stations. Section 7 summarizes the unique advantages of the BPF.
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2. BAYESIAN PROCESSOR

2.1 Concept

Let W be the predictand— a continuous variate whose realization w is being forecasted. Let

X be the estimator — a continuous variate whose realization x constitutes a point estimate of W .

From the viewpoint of the NWS, x is the official, deterministic forecast of W prepared by a

field office. From the viewpoint of a rational decision maker, who recognizes the uncertainty about

W , forecast x is merely a realization of the predictor X — a piece of information that may reduce

the uncertainty about W , but cannot eliminate it. What the rational decision maker then needs is

not a number x, but a function of w — the distribution function of predictandW , conditional on the

predictor realization X = x. The purpose of the BPF is to supply such a conditional distribution

function.

2.2 Characterization of Uncertainties

The inputs to the BPF are the prior density function and the family of likelihood functions.

These inputs are defined and interpreted as follows.

Let g denote the prior density function of the predictand W . This density function character-

izes the natural variability of W . Equivalently, it characterizes the uncertainty about the predictand

that exists before the NWS issues a forecast. This uncertainty may be called the climatic uncer-

tainty (or the prior uncertainty) and may be quantified based on climatic data.

Let f(·|w) denote the density function of the predictor X, conditional on the hypothesis that

the realization of the predictand is W = w. This density function characterizes the variability

of X on all those occasions on which W = w is observed. What is needed is a family of the

conditional density functions {f(·|w) : all w}. Then, for a fixed forecast X = x, a function

f(x|·) exits; it is called the likelihood function of W . More generally, there exists a family of the
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likelihood functions {f(x|·) : all x}. The family f quantifies the stochastic dependence between

the predictor X and the predictand W .

2.3 Bayesian Revision

The Bayesian procedure for information fusion and revision of uncertainty involves two steps.

First, the expected density function κ of predictor X is derived via the total probability law:

κ(x) =

∞Z
−∞

f(x|w)g(w) dw. (1)

Second, the posterior density function φ(·|x) of predictand W , conditional on a deterministic fore-

cast X = x, is derived via Bayes theorem:

φ(w|x) = f(x|w)g(w)
κ(x)

. (2)

In concept, Bayes theorem revises the prior density function g, which characterizes the cli-

matic uncertainty about W , given forecast X = x. The extent of the revision is determined by

the likelihood function f(x|·), which characterizes the degree to which X = x reduces the uncer-

tainty about W . The result of this revision is the posterior density function φ(·|x); it quantifies the

uncertainty about W which remains after the NWS issues forecast X = x.

The corresponding posterior distribution function Φ(·|x) of predictand W is defined by

Φ(w|x) =
wZ

−∞

φ(u|x) du. (3)

It gives P (W ≤ w|X = x) = Φ(w|x), where P stands for probability. The inverse function

Φ−1(·|x) is called the posterior quantile function. For any number p, such that 0 < p < 1, and any

deterministic forecast X = x, the p-probability posterior quantile of predictand W is the quantity

wp such that Φ(wp|x) = p. Therefrom,

wp = Φ−1(p|x). (4)
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Equations (1)–(4) define the theoretic structure of the BPF. Equations (2)–(4) specify the three

outputs, each of which constitutes the probabilistic forecast of W , given deterministic forecast x.

2.4 Bayesian Meta-Gaussian Model

The theoretic structure of the BPF can be implemented in many ways, as different mathe-

matical models for g and f can be formulated, and different solution techniques for φ, Φ, and

Φ−1 can be developed. A particularly elegant BPF is Gaussian-linear (Krzysztofowicz, 1983,

1987; Krzysztofowicz and Watada, 1986; Krzysztofowicz and Reese, 1991), but its applicability

in meteorology is limited to a few predictands (with near-Gaussian g) and a few short lead times

(situations wherein a linear and homoscedastic dependence structure between X and W is mostly

found).

Our objective is to propose a BPF of wide applicability — in that the predictand W and the

predictor X are allowed to have distribution functions of any form, and the dependence structure

between X and W is allowed to be nonlinear and heteroscedastic (which is the case with most

meteorological forecasts, especially for longer lead times). This is the meta-Gaussian BPF (Kelly

and Krzysztofowicz, 1995; Krzysztofowicz and Kelly, 2000a). In addition to the aforementioned

advantages, it subsumes the Gaussian-linear BPF, and thus is a proper generalization thereof.

2.5 Modeling and Estimation

The remaining sections describe the modeling process, the estimation procedure, the goodness

of fit to data, the statistical properties, and the practical advantages of the meta-Gaussian BPF. In

all illustrations, the predictand is the daily maximum temperature; the forecast lead times are 24 h

(1 day), 96 h (4 days), and 168 h (7 days) after 0000 UTC; the forecast points are the three stations:

Savannah, Georgia (KSAV); Portland, Maine (KPWM); and Kalispell, Montana (KFCA).
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3. THE PRIOR DISTRIBUTION FUNCTION

3.1 Climatic Sample

Let Wk denote the maximum temperature on day k of the year (k = 1, ..., 365) at a given

station. To keep the number of days in each year constant, for simplicity, 29 February is excluded.

Because the time series {Wk : k = 1, ..., 365) is obviously nonstationary, the climatic sample is

formed for each day k. To increase the sample size, data are pooled from the consecutive five

days centered on the given day. (The five-day window offers a reasonable compromise between

increasing the sample size and precluding the nonstationarity effects.) Because of missing data,

the sample size varies from day to day. To ensure uniformity, for comparison and convenience,

the oldest data are removed from each day until the sample size for that day equals the smallest

size among the 365 samples.

In summary (Table 1), for each day k of the year (k = 1, ..., 365), there is a climatic sample

{wk(n) : n = 1, ...,M} of size M , where wk(n) denotes the nth observation of the maximum

temperature in the 5-day sampling window for day k.

3.2 Standardization

The daily time series of sample deciles, the lowest observation, and the highest observation

at Savannah are plotted in Fig. 2a. As expected, these time series confirm the nonstationarity of

the maximum temperature. Hence, each predictand Wk has a different prior distribution function

Gk (k = 1, ..., 365). Whereas modeling and estimation of 365 different distribution functions is

feasible — and has been done by the NWS (Peroutka et al., 2005) — we seek a more efficient

method of handling the nonstationarity.

The nonstationarity of the first two moments of Wk can be removed via standardization. First,

for each day k (k = 1, ..., 365), the mean E(Wk) = mk and the variance Var(Wk) = s2k are
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estimated from the original climatic sample {wk(n) : n = 1, ...,M}. For operational forecasting,

the time series of the estimates can be smoothed and approximated by first-order Fourier series

expansions, as shown in Fig. 3; herein, they are used directly. Second, each observation is

standardized:

w0k(n) =
wk(n)−mk

sk
, n = 1, ...,M. (5)

The resultant standardized climatic sample {w0k(n) : n = 1, ...,M} is reanalyzed. Figure 2b

shows the daily time series of the sample statistics: all decile time series are fairly flat, suggesting

that (i) the seasonality of the maximum temperature is explained almost entirely by the seasonality

of the mean and variance, and (ii) the prior distribution function G0
k of the standardized maximum

temperature

W 0
k =

Wk −mk

sk
, k = 1, ..., 365, (6)

is approximately stationary. Of course, the standardization guarantees the stationarity of the first

two moments: E(W 0
k) = 0 and Var(W 0

k) = 1 for k = 1, ..., 365. The qualification “approxi-

mately” stationary is made, at least tentatively, because the time series of the lowest and the highest

standardized observations exhibit some variability and a slight trend in the range, which appears

wider in the warm season than in the cool season; however, these are extreme observations, and

only two per day. Thus, their practical significance cannot be ascertained until the distribution

functions are estimated.

3.3 Empirical Distribution Function

Results are reported for four diverse days in order to make a convincing case for the stationar-

ity of the standardized maximum temperature. The chosen days are (Table 2): one of the coldest,

one of the warmest, one with the maximum range in Fig. 2b, and one with the minimum range in

8



Fig. 2b.

From the standardized climatic sample for day k, the empirical distribution function of W 0
k

was constructed; it is specified by the set of M points

{(w0k(n), pn) : n = 1, ...,M}, (7)

such that

P (W 0
k ≤ w0k(n)) = pn, n = 1, ...,M, (8)

where w0k(n) is the nth realization in the sample for day k sorted in the ascending order, pn =

n/(M + 1) is the Weibull plotting position, and M is the sample size.

3.4 Parametric Distribution Function

A parametric distribution function G0
k of W 0

k was estimated and its goodness-of-fit to the

empirical distribution function was evaluated in terms of the maximum absolute difference (MAD),

a measure consistent with the Kolmogorov-Smirnov statistic:

MAD = max
1≤ n≤M

¯̄
pn −G0

k(w
0
k(n))

¯̄
. (9)

When there were several identical realizations in the sample, they formed a step in the empirical

distribution function; the median plotting position in this step was used to calculate the absolute

difference.

Excellent fits were obtained (Table 3) for all four days with G0
k coming from the Weibull

family of distributions (Appendix A). Moreover, the parameter estimates were similar across the

four days, implying that the standardization successfully removed the seasonality. Therefore,

instead of estimating a different distribution function for every day of the year, it may be sufficient

to estimate just one distribution function that will be valid for every day.
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3.5 Stationary Prior Distribution Function

Under the stationarity hypothesis, W 0
k = W 0 and G0

k = G0 for k = 1, ..., 365, where W 0 is

the stationary–standardized maximum temperature on any day of the year, and G0 is the stationary

prior distribution function of W 0.

To obtain G0, the standardized climatic samples for the four diverse days are pooled together

and a single parametric distribution function is estimated from the pooled sample (Fig. 4). It is a

Weibull distribution (Appendix A) with parameter estimates α = 5.409, β = 5.570, and η = −5.

(Although temperature is not naturally bounded, a lower bound of −5 barely restricts the sample

space: under the standard normal distribution, P (W 0 < −5) = 0.2867 × 10−6.) The goodness-

of-fit of this stationary parametric distribution function to the empirical distribution function for

each day is reported in Table 3. When the stationary parameter estimates are used, the MAD is

somewhat higher for two days and slightly lower, by chance, for the other two days. Overall, the

fits remain very good (MAD < 0.05), corroborating the stationarity hypothesis.

3.6 De-standardization

On any day k (k = 1, ..., 365), the transformation between the stationary distribution function

G0 of W 0 and the distribution Gk of Wk is

Gk(w) = G0
µ
w −mk

sk

¶
, (10)

giving P (Wk ≤ w) = Gk(w) at any point w in the original sample space of the maximum temper-

ature. The transformation between the corresponding density functions is

gk(w) =
1

sk
g0
µ
w −mk

sk

¶
. (11)

When G0 is the Weibull distribution with parameters (α, β, η), it can be shown, via (10), that
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Gk is also the Weibull distribution with parameters (αk, β, ηk), where

αk = α sk,

β = β, (12)

ηk = η sk +mk.

Thus, the scale parameter αk and the shift parameter ηk capture the seasonality of the maximum

temperature, whereas the shape parameter β captures the intrinsic, season-invariant, stochasticity

of the maximum temperature.

The Weibull distribution functions Gk with the parameters calculated according to (12) are

plotted along with the empirical distribution functions in the original sample spaces in Fig. 5. The

nonstationarity of Gk is vivid, yet the fit remains excellent for each day. (The MAD defined in (9)

remains invariant under the de-standardization.)

The above procedure, illustrated herein for Savannah, performed equally well for Portland

and Kalispell, with the only distinction being that the best-fit parametric distribution for Portland

turned out to be log-logistic rather than Weibull.

In conclusion, the prior distribution functions Gk for all days of the year (k = 1, ..., 365)

can be specified by (i) a single, stationary, 3-parameter distribution (drawn from one of the com-

mon families), with parameters (α, β, η) estimated from the pooled standardized sample, and (ii)

the means and the standard deviations of the maximum temperatures {(mk, sk) : k = 1, ..., 365}

estimated from the climatic samples for all days. Once estimated, the prior distribution func-

tions remain valid until enough additional climatic observations are collected to detect a change in

climate since the last estimation.
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3.7 Comparison of Models

The NWS took a different approach to modeling the nonstationary distribution functions Gk

for k = 1, ..., 365 (Peroutka et al., 2005). It chose a four-parameter Generalized Lambda Distribu-

tion (GLD) of Karian and Dudewicz (2000); then it modeled the four time series of daily parameter

estimates by employing cosine series which required estimating 22 constants. We calculated the

parameter values for each of the four test days and evaluated the goodness-of-fit of the GLD to the

empirical distribution function (Table 3). The fit of the GLD is decisively inferior to the fit of the

Weibull distribution. In an extended test, we compared the two models on the first day of every

month and then calculated the average MAD; it is 0.0270 for the Weibull model and 0.0456 for the

GLD.

Overall, the model employing the standardization of the daily variates (as a means of obtaining

a stationary time series) and a single, stationary, 3-parameter Weibull distribution fits the data better

than the model employing a nonstationary four-parameter GLD. Moreover, the estimation of the

nonstationary GLD is more complex because of the cosine series involved, and the use of the

GLD is computationally far more demanding because there are no closed-form expressions for the

distribution function and the density function. (The GLD is defined by its quantile function — the

inverse of the distribution function.)
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4. THE LIKELIHOOD FUNCTION

4.1 Joint Sample

Let xk denote a deterministic forecast of the maximum temperature on day k of the year at

a given station issued by a NWS field office with a specified lead time; the lead times considered

herein are 24, 96, and 168 h after 0000 UTC. Let wk denote the corresponding observation of

the maximum temperature. The pair (xk, wk) forms a joint realization of (Xk,Wk), where Xk is

the forecast variate (the predictor, from the viewpoint of a rational decision maker), and Wk is the

predictand. A joint sample {(xk, wk)} can be retrieved from the NDFD; however, its usage poses

three challenges.

First, the available joint sample of (Xk,Wk) is typically much shorter than the climatic sample

of Wk. For example, for the three stations analyzed herein, the joint samples are about one year

long (Table 4) whereas the climatic samples are more than 100 years long (Table 1). The idea of

augmenting the joint sample via simulation (Krzysztofowicz and Kelly, 2000a) or “re-forecasting”

(Hamill et al., 2006) is not applicable here because the official NWS forecasts are subjective —

they incorporate numerous human judgments made by different forecasters at different aggregation

levels, or scales, as in national centers and field offices (Glahn and Ruth, 2003); and it is infeasible

to determine, efficiently and reliably, the judgmental modifications of various model outputs that

would have been made in years past by the currently employed NWS forecasters.

Second, the joint sample should be homogeneous: all forecasts included in it should have

been produced by one forecast system — the same system for which the BPF is being developed.

Inasmuch as the numerical weather prediction models, which provide guidance to forecasters,

undergo modifications, and the forecasters in the NWS field offices change (as some relocate or

retire and others are hired), the homogeneous joint sample may, in fact, be shorter than the sample
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stored in the NDFD.

Third, the performance of the forecast system may be nonstationary; for instance, forecasts

produced during a cool season may be more informative than forecasts produced during a warm

season. This means that the stochastic dependence between Xk and Wk, which must be captured

by the likelihood function, varies with season; in general, it varies with k (k = 1, ..., 365). There-

fore, the likelihood function must be allowed to be nonstationary, despite the lack of an adequate

sample to develop and estimate a formal nonstationary model.

4.2 Adaptive Scheme

To cope with the first challenge, it is necessary to formulate a statistical technique that can

extract information from a small joint sample and then fuse it with information extracted from a

large climatic sample. As this is the unique capability of the Bayesian approach, this approach

becomes inevitable.

To cope with the other two challenges, an adaptive scheme is formulated for sampling, esti-

mation, and forecasting as follows:

1. The joint sample is taken from about 90–120 days preceding a forecast day — the sampling

window within which the system homogeneity and performance stationarity can be

assumed. (The two time series {Xk} and {Wk} are still treated as nonstationary.)

2. The likelihood function estimated from a given joint sample is used in forecasting on each

of the subsequent 5–10 days — the forecasting window to which the sampling assumptions

are extended.

4.3 Joint Standardization

Like the time series of the predictand {Wk : k = 1, ..., 365}, the time series of the forecast

variate {Xk : k = 1, ..., 365} is nonstationary. But unlike Wk, which could be characterized sta-
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tistically using a large climatic sample, Xk cannot be characterized in the parallel manner because

the joint sample is so small. Therefore, we resort to the following procedure.

First, each joint realization (xk, wk) is standardized using the climatic mean mk and the cli-

matic standard deviation sk of predictand Wk for day k:

x0k =
xk −mk

sk
, w0k =

wk −mk

sk
. (13)

The plots of the original time series {(xk, wk)} and the standardized time series {(x0k, w0k)} in Fig.

6 for the lead time of 168 h show how this standardization eliminates, or at least reduces, the

seasonality in the joint sample. Ditto for other lead times and stations. (Note how different the

time series of the forecasts and observations are.)

Second, the standardized time series is assumed to be stationary and ergodic within a sampling

window of N days. Realizations are retrieved from N days preceding the current forecast day (the

day on which the forecast is to be made) to obtain a joint sample {(x0(n), w0(n)) : n = 1, ..., N}.

This is considered to be a random sample of the pair of variates (X 0,W 0) such that

X 0 =
Xk −mk

sk
, W 0 =

Wk −mk

sk
, (14)

for day k within the forecasting window for which a forecast is to be made with the specified lead

time. While this standardization guarantees E(W 0) = 0 and Var(W 0) = 1, no presumption is

made, or needed, about the moments of X 0.

The sampling windows and the sample sizes, N , chosen for the examples are listed in Table 4.

Note that the joint samples include only past forecasts for which the corresponding observations

are available on the forecast day. So, for the 168 h lead time, no forecasts issued within seven days

of the forecast day are included. The sample sizes vary due to missing data.
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4.4 Marginal Distribution Function

Let K̄ 0 denote the marginal distribution function of the standardized forecast variate X 0, such

that K̄ 0(x0) = P (X 0 ≤ x0) for any x0. This K̄ 0 is to be estimated from the marginal sample

{x0(n) : n = 1, ..., N} of the standardized joint sample. (The overbar signifies that K̄ 0 is only an

initial estimate of the marginal distribution function of X 0; this estimate can be revised later as a

result of modeling (Krzysztofowicz and Kelly, 2000a, 2000b); but because the revised estimate is

not needed for the operational BPF, it is not discussed herein.)

Figure 7 shows the empirical distribution functions constructed as explained in Section 3.3,

and the estimated parametric distribution functions K̄ 0, all Weibull, for two sampling windows

(cool and warm) and two lead times (24 h and 168 h) at Savannah. The fits are good (Table 5).

As the lead time increases, the distribution function becomes steeper and concentrated around the

median. The effect of season is slight and is confounded by the difference in sample sizes.

A comparison of Fig. 7 with Fig. 4 reveals that in each of the four cases, K̄ 0 6= G0; most

significantly, the tails of K̄ 0 are much shorter than the tails of G0. Clearly the forecasts have a

distributional bias: it is evident in the shape parameter (β̄ > β), but not in the scale parameter

(ᾱ w α), and it increases with lead time. Of course, the distributional bias implies a bias in both

the mean and the variance of the forecast.

The general patterns shown here for Savannah hold also for Portland and Kalispell, with the

exception of the distribution type, which is log-logistic at Portland.

The initial marginal distribution function K̄k of the forecast variate Xk on day k, with the

specified lead time, is obtained from K̄ 0 via (14):

K̄k(x) = K̄ 0
µ
x−mk

sk

¶
, (15)
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giving P (Xk ≤ x) = K̄k(x) at any point x in the original sample space of the maximum tem-

perature. When the adaptive scheme (Section 4.2) is deployed, K̄k is nonstationary (because the

climatic mean mk and standard deviation sk vary with day k of the year) even though the function

K̄ 0 remains the same on all forecast days within the specified forecasting window . However, K̄ 0

is different for different lead times, as can be seen in Fig. 7.

When K̄ 0 is the Weibull distribution with parameters (ᾱ, β̄, η̄), it follows via (15) that K̄k is

also the Weibull distribution with parameters (ᾱk, β̄, η̄k); the relations between the corresponding

parameters parallel those in (12). For example, the forecast of the maximum temperature at KSAV

on 7 February made with the lead time of 168 h (7 days) is characterized by the variate X38 whose

marginal distribution function K̄38 is Weibull with parameters

ᾱ38 = ᾱ s38 = 5.341× 9.818 = 52.439,

β̄ = β̄ = 11.203,

η̄38 = η̄ s38 +m38 = −5× 9.818 + 61.631 = 12.541,

where the values of ᾱ, β̄, η̄ come from Fig. 7c and the values of m38, s38 come from Fig. 3. Four

examples of K̄k for different days and lead times are shown in Fig. 8.

4.5 Meta-Gaussian Likelihood Model

The objective now is to model the stochastic dependence between the standardized forecast

variate X 0 and the standardized predictand W 0. Towards this end, we employ the meta-Gaussian

likelihood model of Krzysztofowicz and Kelly (2000a, 2000b). At the heart of this model is the

normal quantile transform (NQT):

Z = Q−1(K̄ 0(X 0)), V = Q−1(G0(W 0)), (16)

where Q is the standard normal distribution function and Q−1 is its inverse. The NQT guarantees
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that in the sample space of the transformed variates (Z, V ), each marginal distribution function is

Gaussian (Kelly and Krzysztofowicz, 1995, 1997), and several empirical studies using hydrologi-

cal and meteorological data have demonstrated that the bivariate distribution function is Gaussian

as well (e.g., Herr and Krzysztofowicz, 2005; Krzysztofowicz and Kelly, 2000a). Readers in-

terested in these properties of the meta-Gaussian likelihood model are referred to the works cited

above. The presentation below focuses on the practical estimation of the likelihood parameters.

4.6 Likelihood Parameters

Given the standardized joint sample {(x0(n), w0(n)) : n = 1, ..., N} for the specified lead

time, the marginal distribution function K̄ 0 for the specified lead time, and the prior distribution

function G0, each joint realization is processed through the NQT to obtain

z(n) = Q−1
¡
K̄ 0(x0(n))

¢
, v(n) = Q−1(G0(w0(n))) . (17)

Then the transformed joint sample {(z(n), v(n)) : n = 1, ..., N} is used to estimate the parameters

a, b, σ of the Gaussian model:

E(Z|V = v) = av + b, (18a)

Var(Z|V = v) = σ2. (18b)

The maximum likelihood estimators should be used (DeGroot, 1986).

Once its parameters are estimated, the Gaussian model (18) can be written in the form of the

conditional quantile function:

zp|v = av + b+ σQ−1(p), (19)

where 0 < p < 1, and zp|v is the p-probability quantile of Z, conditional on V = v; that is

P (Z ≤ zp|v|V = v) = p. As is well known, the linear regression equals the conditional median:

E(Z|V = v) = z0.5|v.

To visualize the dependence structure and to judge the fit of the model, scatterplots should
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be produced, as shown in Fig. 9 for two lead times. The scatterplots of the transformed sample

points (z(n), v(n)) in Figs. 9c and 9d are linear and homoscedastic, and the Gaussian model (19),

depicted by three conditional quantile functions, with p = 0.1, 0.5, 0.9, fits the sample points well.

The scatterplots of the standardized sample points (x0(n), w0(n)) in Figs. 9a and 9b are slightly

nonlinear and heteroscedastic, especially for the 168-h lead time. The mapping of (19) into the

standardized sample space gives

x0p|w0 = K̄ 0−1(Q(aQ−1(G0(w0)) + b+ σQ−1(p))), (20)

where x0p|w0 is the p-probability quantile of X 0, conditional on W 0 = w0. In particular, the regres-

sion E(Z|V = v) = z0.5|v, which is linear (Figs. 9c, 9d) is mapped into the conditional median

x00.5|w0 , which is slightly nonlinear (Figs. 9a, 9b). The 80% central credible interval about the con-

ditional median of Z, whose width z0.9|v − z0.1|v is constant with v (Figs. 9c, d), is mapped into

the 80% central credible interval about the conditional median of X 0, whose width x00.9|w0 − x00.1|w0

decreases with w0 (Figs. 9a, b).

In summary, these analyses demonstrate that applying the Gaussian model directly in the

standardized sample space of X 0 and W 0 would be a wrong approach for the data at hand. Further

evidence to this effect is given in Section 6.1.

4.7 Forecast Informativeness

The stochastic dependence between Z and V is fully characterized by the Pearson’s product-

moment correlation coefficient γ, which may be expressed in terms of the likelihood parameters

(Krzysztofowicz, 1992):

γ = (sign of a)
·³a

σ

´−2
+ 1

¸− 1
2

. (21)

Under the meta-Gaussian likelihood model, γ remains a fully efficient measure of stochastic de-

pendence between the standardized variates X 0 and W 0, as well as between the original variates
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X and W (Kelly and Krzysztofowicz, 1997); and it can be transformed into the Spearman’s rank

correlation coefficient:

ρ =
6

π
arcsin

³γ
2

´
. (22)

The values of both measures, γ and ρ, are reported in Fig. 9.

Moreover, the Bayesian measure of informativeness of predictor X with respect to predictand

W is the informativeness score (Krzysztofowicz, 1987, 1992):

IS = |γ| =
·³a

σ

´−2
+ 1

¸−1
2

. (23)

The score is bounded, 0 ≤ IS ≤ 1, with IS = 0 for an uninformative predictor, and IS = 1 for

a perfect predictor. (The informativeness score was called the Bayesian correlation score in the

original publication by Krzysztofowicz (1992).) The value of IS is determined by the signal-to-

noise ratio |a|/σ, estimated by regressing Z on V , as illustrated in Fig. 9: the absolute value of

the slope coefficient, |a|, is the measure of signal, and the standard deviation of the residual, σ,

is the measure of noise. Figure 9 shows that, as expected, the forecast with lead time of 24 h is

significantly more informative than the forecast with lead time of 168 h.
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5. PROBABILISTIC FORECAST

5.1 Posterior Parameters

After the likelihood parameters have been estimated, the posterior parameters can be calcu-

lated:

c0 =
−ab

a2 + σ2
, (24a)

c1 =
a

a2 + σ2
, (24b)

T 2 =
σ2

a2 + σ2
. (24c)

These parameters are for a specified lead time, and are valid for every day k within the forecasting

window, as described in Section 4.2.

5.2 Forecasting Equations

To simplify the forecasting equations, the index k of the predictand’s day is omitted, which is

equivalent to the following substitutions in the forecasting problem. Given a deterministic forecast

x = xk, with a specified lead time, of predictand W = Wk, and given (i) the prior distribution

function G = Gk and the corresponding prior density function g = gk for day k, (ii) the marginal

distribution function K̄ = K̄k for day k and for the specified lead time, and (iii) the posterior

parameters c0, c1, T for the specified lead time, the probabilistic forecast is specified by one of the

following constructs.

The posterior distribution function Φ of W , defined in Eq. (3), is specified by the equation

Φ(w) = Q

µ
1

T

£
Q−1(G(w))− c1Q

−1(K̄(x))− c0
¤¶

, (25)

where it is to be understood that Φ(w) = Φ(w|x), with the abbreviated form being used when the

value x of the deterministic forecast need not be shown. The p-probability posterior quantile of

W , defined in Eq. (4), is specified by the equation
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wp = G−1
¡
Q(c1Q

−1(K̄(x)) + c0 + TQ−1(p))
¢
. (26)

The posterior density function φ of W , defined in Eq. (2), is specified by the equation

φ(w) =
1

T
exp

µ
1

2

n£
Q−1(G(w))

¤2 − £Q−1 (Φ(w))¤2o¶ g(w), (27)

where it is understood that φ(w) = φ(w|x) when x need not be shown.

5.3 Posterior Functions

Figure 10 shows examples of probabilistic forecasts for Savannah, in the cool season, with

the lead times of 24 h and 168 h. The posterior distribution functions (Figs. 10a, b), and the

corresponding posterior density functions (Figs. 10c, d), quantify the uncertainty about the max-

imum temperature, given a deterministic forecast, either X = 50◦F or X = 70◦F . They also

illustrate how the climatic uncertainty, quantified in terms of the prior distribution function (Figs.

10a, b) and the prior density function (Figs. 10c, d), is revised based on a deterministic forecast.

Two effects of the forecast are apparent. First, the forecast shifts the center of the probability

mass (under the density function) towards the forecasted temperature. Second, the forecast usu-

ally (but not always) reduces the uncertainty as the posterior density function is sharper than the

prior density function; however, this reduction of uncertainty depends on the forecast and the lead

time. Forecast X = 70◦F reduces the uncertainty more than forecast X = 50◦F , which reflects

the heteroscedasticity of the dependence structure between X 0 and W 0 that was captured by the

likelihood function. But as the lead time increases, from 24 h to 168 h, the degree by which the

forecast reduces the climatic uncertainty diminishes: at 168 h, the posterior density functions are

only slightly sharper than the prior density function.
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5.4 Limit of Predictability

One of the most important properties of the BPF is its limiting behavior: when the informa-

tiveness score IS decreases to zero, the posterior distribution function Φ converges uniformly to

the prior distribution function G. (Likewise φ converges to g.) Why is this practically important?

The example (Fig. 9) illustrates a common property of meteorological forecasts: the longer the

lead time, the lower the informativeness of the forecast. (This is further illustrated in Section 6.1.)

At the limit of predictability, the forecast contains no signal (a = 0), just noise (σ > 0); thus

IS = 0. It follows that as the lead time approaches the limit of predictability, the BPF guaran-

tees that the posterior distribution functions Φ converge to the prior distribution function G — the

behavior that is evident already in Fig. 10. At the limit of predictability, Φ = G, which is the

climatic probabilistic forecast for the day because G was estimated from the climatic sample for

the day. In conclusion, at the limit of predictability and beyond, the BPF automatically provides

the decision maker with the correct and complete assessment of the climatic uncertainty.
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6. DISCUSSION

6.1 Forms of Heteroscedasticity

The heteroscedasticity of the dependence structure between X 0 and W 0 may take many forms.

That is why a flexible model for the likelihood function, such as the meta-Gaussian model, is

necessary in order to correctly capture the forecast uncertainty. For instance, at Savannah, the

conditional variance of X 0 decreases with w0 (the 80% central credible interval in Fig. 9a narrows).

But at Portland, the conditional variance of X 0 increases with w0 (the 80% central credible interval

in Fig. 11a widens). Loosely speaking, the 24-h forecasts are “better” for higher temperatures at

Savannah, but for lower temperatures at Portland.

For the decision maker, the practical effect of this heteroscedasticity resurfaces in the posterior

density function. As the forecasted temperature increases, the posterior density function becomes

sharper at Savannah (Fig. 10c) — implying decreasing uncertainty, but grows flatter at Portland

(Fig. 12c) — implying increasing uncertainty.

6.2 Revision of Uncertainty

The probabilistic forecasts for Portland (Fig. 12) illustrate also the interaction between the cli-

matic uncertainty about the predictand and the informativeness of the forecast. The prior density

functions (Figs. 12c, d) indicate that the climatic uncertainty is larger on the cool day than on the

warm day. The likelihood parameters (Figs. 11c, d) indicate that the 24-h forecast is more informa-

tive on a cool day than on a warm day. The Bayesian revisions of (i) a larger climatic uncertainty

based on a more informative forecast (for the cool day) and (ii) a smaller climatic uncertainty

based on a less informative forecast (for the warm day) turn out to give nearly identical posterior

uncertainty: when the plots in Fig. 12c are shifted 2◦F to the right and then superposed on the

plots in Fig. 12d, the posterior density functions match (almost). This illustrates the compensatory
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nature of the interaction between the climatic uncertainty and the forecast informativeness, which

only Bayes theorem can capture correctly and fully (in the shape of the revised density function).

6.3 Comparison of Performance

Figure 13 presents a compilation of the likelihood parameters a, b, and σ for three stations,

two seasons, and three lead times. The compilation includes also the informativeness score, IS,

for the same stations, seasons, and seven lead times ranging from 24 h to 168 h. As the lead

time increases, the signal measure a decreases, the noise measure σ increases (with one exception,

explainable by the variability due to small sample size — see Table 4), and, consequently, the

informativeness score IS decreases (again, with one exception). The informativeness score is the

most stable measure. It declines at a similar rate for each station and season up to the lead time

of 96 h. After that the decline is more rapid for all but one case, and the differences between the

stations and the seasons grow larger. Finally, the bias parameter b is largely independent of the

lead time, but highly variable across stations and seasons.

6.4 Generalization of Parameters

For implementation of the BPF in the NDFD, where it is desirable to store as few parameters

as possible, an attempt should be made to determine which parameters vary least across stations,

seasons, and lead times, and thus could be generalized. Figure 13 suggests the possibilities. Since

each, IS and a, exhibits a relatively small variability across stations and seasons, perhaps a simple

model could describe each of them as a function of the lead time. Then the values of IS and a

could be used to calculate σ via Eq. (23). Therefore, only the two functions describing IS and a

and the values of b would need to be stored.
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7. CLOSURE

We have presented a theoretically-based, empirically-validated Bayesian processor that can

be attached to the NDFD in order to process a deterministic forecast of a continuous predictand

into a full-fledged probabilistic forecast. This probabilistic forecast is specified by a distribution

function, or a density function, or a quantile function. Thus, it provides the complete characteri-

zation of uncertainty needed by rational decision makers who use formal decision models and by

information providers who want to extract various forecast products for their customers.

The BPF offers the users a quintessential property: the posterior probability of any event can

be taken at its face value. This is so because the Bayesian probabilistic forecast is well-calibrated

against the climatic distribution function of the predictand, which is estimated from the longest

available homogeneous sample that can be retrieved from the NCDC or some other archive.

The BPF comes furnished with a statistical procedure which copes with several non-stationar-

ities of the stochastic processes involved and which ensures a parsimonious parameterization. In

effect, all archived data pertinent to a given predictand and forecast lead time are processed into

two samples for parameter estimation: the climatic sample of the predictand, and the joint sample

of the predictor-predictand pair. The two samples may be of different sizes, as is almost always

the case in meteorology. The unique attribute of the BPF is that it extracts information from

each sample and then fuses it according to Bayes theorem, thereby ensuring that the resultant

probabilistic forecast is always well calibrated and most informative, given the data at hand.
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APPENDIX A

WEIBULL DISTRIBUTION

Let Y be a continuous variate having a bounded-below sample space (η,∞). Let η < y <∞

and 0 < p < 1. Then variate Y has a Weibull distribution with the scale parameter α > 0, the

shape parameter β > 0, and the shift parameter −∞ < η < ∞ if the distribution function of Y

is

H(y) = 1− exp
"
−
µ
y − η

α

¶β
#
, (A.1)

the density function of Y is

h(y) =
β

α

µ
y − η

α

¶β−1
exp

"
−
µ
y − η

α

¶β
#
, (A.2)

and the quantile function of Y is

H−1(p) = α [− ln(1− p)]
1
β + η. (A.3)

For properties and estimation methods, see Johnson and Kotz (1970, vol. 1), and Schütte et al.

(1987).
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Table 1. Climatic samples for estimation of the prior distribution functions.

Station Start date End date Years Days M

KSAV Jan. 1874 Dec. 2001 128 45,613 618

KPWM Apr. 1874 Dec. 2001 128 46,654 634

KFCA June 1896 Dec. 2001 106 38,457 519
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Table 2. Days and climatic sample statistics for the prior distribution functions at KSAV.

Day’s attribute Date k mk[
◦F ] sk[

◦F ]

cool 31 Jan. 31 61.743 9.894

warm 1 Aug. 213 90.686 4.452

max range 20 Sep. 263 84.427 5.717

min range 15 Nov. 319 69.764 7.829
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Table 3. Maximum absolute difference (MAD) between the empirical prior distribution

function of W 0
k for the given day k and an estimated parametric prior distribution

function at KSAV.

Distribution 31 Jan. 1 Aug. 20 Sep. 15 Nov.

Weibull for given day 0.0161 0.0242 0.0158 0.0333

Stationary Weibull 0.0158 0.0307 0.0387 0.0290

GLD for given day 0.0371 0.0396 0.0839 0.0827
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Table 4. Joint samples for estimation of the likelihood functions.

Available sample Sampling window Sample size N

Station Start date End date Years Season End date 24 h 96 h 168 h

KSAV Oct. 2004 Feb. 2006 1.42 cool 31 Jan. 2005 116 113 110
warm 1 Aug. 2005 66 63 62

KPWM Oct. 2004 Feb. 2006 1.42 cool 31 Jan. 2005 115 112 109
warm 1 Aug. 2005 67 62 60

KFCA Oct. 2004 June 2005 0.75 cool 31 Jan. 2005 117 114 109
warm 30 June 2005 74 71 70
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Table 5. Maximum absolute difference (MAD) between the empirical marginal distribution

function of X 0 and the estimated Weibull marginal distribution function of X 0 at KSAV.

Sampling window Lead time

Season End date 24 h 96 h 168 h

cool 31 Jan. 2005 0.0372 0.0371 0.0376

warm 1 Aug. 2005 0.0736 0.0537 0.0500
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FIGURE CAPTIONS

Figure 1. The concept of data fusion and uncertainty quantification via the Bayesian

Processor of Forecast (BPF) coupled to the National Digital Forecast

Database (NDFD) and the National Climatic Data Center (NCDC).

Figure 2. Time series of the sample deciles, the lowest observation, and the highest

observation of the daily maximum temperature at KSAV: (a) in the original

sample space, and (b) in the standardized sample space.

Figure 3. Time series of (a) the sample mean, and (b) the sample standard deviation of the

daily maximum temperature at KSAV, and the fitted first-order Fourier series

expansions.

Figure 4. Stationary prior distribution functions, empirical and Weibull G0, of the standardized

predictand W 0, estimated from the pooled standardized climatic sample (for 31 Jan.,

1 Aug., 20 Sep., 15 Nov.) at KSAV.

Figure 5. Prior distribution functions, empirical (constructed from the climatic sample for day k)

and Weibull Gk (derived from the stationary prior distribution function G0 shown in

Fig. 4, the climatic mean mk, and the climatic standard deviation sk for day k), in the

original sample space of the predictand Wk at KSAV for: (a) 31 Jan., (b) 1 Aug.,

(c) 20 Sep., and (d) 15 Nov.

Figure 6. Time series of the joint sample, forecasts with 168 h lead time and observations, at

KSAV: (a) in the original sample space, and (b) in the standardized sample space.
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Figure 7. Marginal distribution functions, empirical and Weibull K̄ 0, of the standardized forecast

variates X 0, obtained using sampling windows for two forecast days and two lead times

at KSAV: (a) cool day, 24 h lead time; (b) warm day, 24 h lead time; (c) cool day, 168 h

lead time; (d) warm day, 168 h lead time.

Figure 8. Marginal distribution function K̄k of the forecast variate Xk (derived from the

distribution function K̄ 0 shown in Fig. 7, the climatic mean mk, and the climatic

standard deviation sk for day k shown in Fig. 3) at KSAV for: (a) cool day (1 Feb.),

24 h lead time; (b) warm day (2 Aug.), 24 h lead time; (c) cool day (7 Feb.), 168 h

lead time; (d) warm day (8 Aug.), 168 h lead time.

Figure 9. Dependence structure of the likelihood function at KSAV obtained using the sampling

window for a cool day (31 Jan.) and two lead times; meta-Gaussian regression of X 0

on W 0 and the 80% central credible interval in the standardized sample space: (a)

24 h lead time, (b) 168 h lead time; linear regression of Z on V and the 80% central

credible interval in the normal sample space: (c) 24 h lead time, (d) 168 h lead time.

Figure 10. Quantification of uncertainty about the maximum temperature W at KSAV on a cool

day. Prior distribution function G and posterior distribution functions Φ conditional

on deterministic forecasts X = x [◦F ] issued with the lead times of (a) 24 h, for 1 Feb.,

(b) 168 h, for 7 Feb. Prior density function g and posterior density functions φ

conditional on deterministic forecasts X = x [◦F ] issued with the lead times of

(c) 24 h, for 1 Feb., (b) 168 h, for 7 Feb.
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Figure 11. Dependence structure of the likelihood function for 24-h lead time at KPWM

obtained using the sampling window for a cool day (31 Jan.) and a warm day

(1 Aug.); meta-Gaussian regression of X 0 on W 0 and the 80% central credible

interval in the standardized sample space: (a) cool day, (b) warm day; linear

regression of Z on V and the 80% central credible interval in the normal

sample space: (c) cool day, (d) warm day.

Figure 12. Quantification of uncertainty about the maximum temperature W at KPWM with

24-h lead time. Prior distribution function G and posterior distribution functions

Φ conditional on deterministic forecasts X = x [◦F ] for (a) cool day (1 Feb.),

(b) warm day (2 Aug.). Prior density function g and posterior density functions

φ conditional on deterministic forecasts X = x [◦F ] for (c) cool day (1 Feb.),

(d) warm day (2 Aug.).

Figure 13. Likelihood parameters at KSAV, KPWM, and KFCA for forecasting windows in the

cool season (black symbols) and the warm season (open symbols), with the lead times

of 24 h, 96 h, 168 h: (a) signal measure a, (b) bias measure b, (c) noise measure σ.

The informativeness score IS for all three stations, two seasons, and seven lead

times (d).
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Figure 1. The concept of data fusion and uncertainty quantification via the Bayesian

Processor of Forecast (BPF) coupled to the National Digital Forecast

Database (NDFD) and the National Climatic Data Center (NCDC).
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Figure 2. Time series of the sample deciles, the lowest observation, and the highest

observation of the daily maximum temperature at KSAV: (a) in the original

sample space, and (b) in the standardized sample space.
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Figure 3. Time series of (a) the sample mean, and (b) the sample standard deviation of the

daily maximum temperature at KSAV, and the fitted first-order Fourier series

expansions.
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Figure 4. Stationary prior distribution functions, empirical and Weibull G0, of the standardized

predictand W 0, estimated from the pooled standardized climatic sample (for 31 Jan.,

1 Aug., 20 Sep., 15 Nov.) at KSAV.
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Figure 5. Prior distribution functions, empirical (constructed from the climatic sample for day k)

and Weibull Gk (derived from the stationary prior distribution function G0 shown in

Fig. 4, the climatic mean mk, and the climatic standard deviation sk for day k), in the

original sample space of the predictand Wk at KSAV for: (a) 31 Jan., (b) 1 Aug.,

(c) 20 Sep., and (d) 15 Nov.
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Figure 6. Time series of the joint sample, forecasts with 168 h lead time and observations, at

KSAV: (a) in the original sample space, and (b) in the standardized sample space.
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Figure 7. Marginal distribution functions, empirical and Weibull K̄ 0, of the standardized forecast

variates X 0, obtained using sampling windows for two forecast days and two lead times

at KSAV: (a) cool day, 24 h lead time; (b) warm day, 24 h lead time; (c) cool day, 168 h

lead time; (d) warm day, 168 h lead time.
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Figure 8. Marginal distribution function K̄k of the forecast variate Xk (derived from the

distribution function K̄ 0 shown in Fig. 7, the climatic mean mk, and the climatic

standard deviation sk for day k shown in Fig. 3) at KSAV for: (a) cool day (1 Feb.),

24 h lead time; (b) warm day (2 Aug.), 24 h lead time; (c) cool day (7 Feb.), 168 h

lead time; (d) warm day (8 Aug.), 168 h lead time.
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Figure 9. Dependence structure of the likelihood function at KSAV obtained using the sampling

window for a cool day (31 Jan.) and two lead times; meta-Gaussian regression of X 0

on W 0 and the 80% central credible interval in the standardized sample space: (a)

24 h lead time, (b) 168 h lead time; linear regression of Z on V and the 80% central

credible interval in the normal sample space: (c) 24 h lead time, (d) 168 h lead time.
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Figure 10. Quantification of uncertainty about the maximum temperature W at KSAV on a cool

day. Prior distribution function G and posterior distribution functions Φ conditional

on deterministic forecasts X = x [◦F ] issued with the lead times of (a) 24 h, for 1 Feb.,

(b) 168 h, for 7 Feb. Prior density function g and posterior density functions φ

conditional on deterministic forecasts X = x [◦F ] issued with the lead times of

(c) 24 h, for 1 Feb., (b) 168 h, for 7 Feb.
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Figure 11. Dependence structure of the likelihood function for 24-h lead time at KPWM

obtained using the sampling window for a cool day (31 Jan.) and a warm day

(1 Aug.); meta-Gaussian regression of X 0 on W 0 and the 80% central credible

interval in the standardized sample space: (a) cool day, (b) warm day; linear

regression of Z on V and the 80% central credible interval in the normal

sample space: (c) cool day, (d) warm day.
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Figure 12. Quantification of uncertainty about the maximum temperature W at KPWM with

24-h lead time. Prior distribution function G and posterior distribution functions

Φ conditional on deterministic forecasts X = x [◦F ] for (a) cool day (1 Feb.),

(b) warm day (2 Aug.). Prior density function g and posterior density functions

φ conditional on deterministic forecasts X = x [◦F ] for (c) cool day (1 Feb.),

(d) warm day (2 Aug.).
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Figure 13. Likelihood parameters at KSAV, KPWM, and KFCA for forecasting windows in the

cool season (black symbols) and the warm season (open symbols), with the lead times

of 24 h, 96 h, 168 h: (a) signal measure a, (b) bias measure b, (c) noise measure σ.

The informativeness score IS for all three stations, two seasons, and seven lead

times (d).
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